
# **Chemistry O-Level**

# **Atomic Structure**

Join us on a journey into the fundamental world of atomic structure, elements, and the periodic table.



ID 337927590 © Wolney Bit

### **CHAPTER 1**

# Atomic Structure: The Basics

#### What is an Atom?

The smallest particle of an element, atoms are spherical, with negatively charged electrons revolving around a central nucleus.

### Neutrality

Atoms are neutral because the number of positive protons equals the number of negative electrons.


#### **Nucleus**

Contains positively charged protons (p+) and neutral neutrons (n0).

### Valence Shell

The outermost shell, containing valence electrons that participate in chemical reactions.

## **Subatomic Particles**



| Particle      | Mass (a.m.u.)       | Charge |
|---------------|---------------------|--------|
| Proton (p+)   | 1                   | +1     |
| Neutron (n0)  | 1                   | 0      |
| Electron (e-) | 1/2000 (negligible) | -1     |

<sup>\*</sup>a.m.u. = Atomic mass unit. The electron's mass is considered negligible compared to protons and neutrons.

# **Defining Elements**

#### What is an Element?

A pure substance composed of similar atoms with the same atomic number and chemical behavior.

### **Atomic (Proton) Number**

The number of protons (p+) inside the nucleus. It uniquely identifies an element. For a neutral atom, it also equals the number of electrons.

### Mass (Nucleon) Number

The total number of protons and neutrons (p+ + n0) inside the nucleus.

### **Calculating Neutrons**

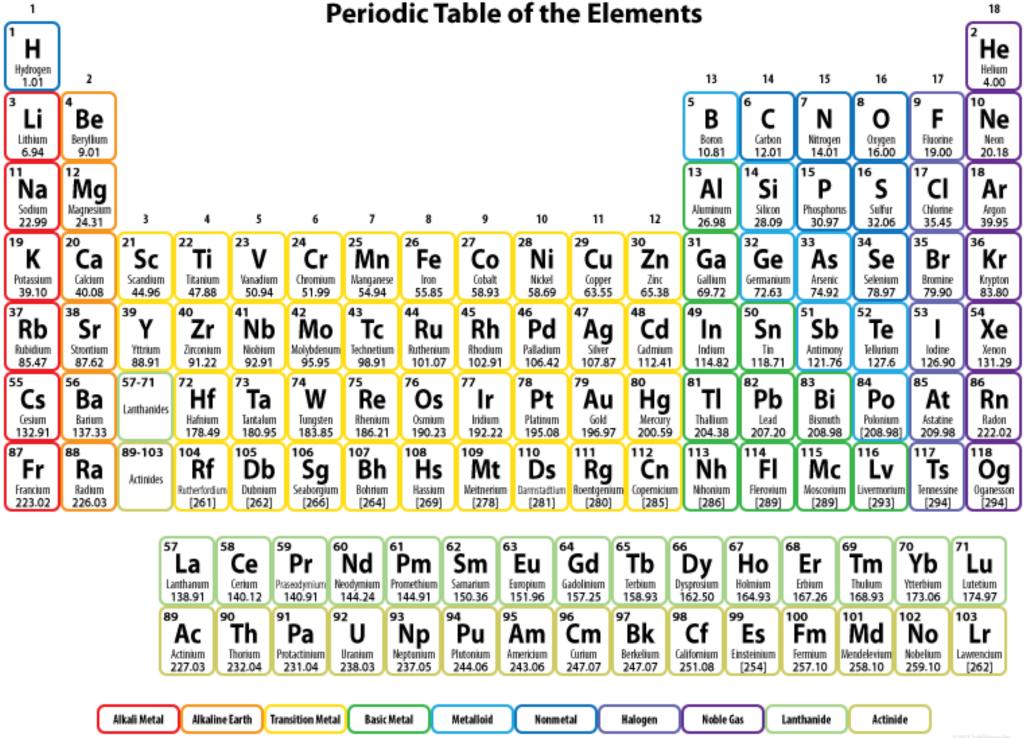
Number of neutrons = Mass number - Atomic number. This helps distinguish isotopes.

# Electronic Structure & Isotopes

#### **Electronic Structure**

Arrangement of electrons in an atom's shells, also known as electronic distribution or configuration.

- First shell: max 2 electrons
- Second shell: max 8 electrons
- Third shell: max 18 electrons (sometimes 8)
- Any other shell: max 32 electrons


The outermost shell should not contain more than 8 electrons (octet rule), except for the first shell.

### Isotopes

Atoms of the same element with the same atomic number (protons) but different mass numbers (neutrons).

- Identical chemical properties (same valence electrons).
- Different physical properties (mass, density).
- Separated physically, not chemically.

Example: Chlorine-35 and Chlorine-37 contribute to chlorine's relative atomic mass of 35.5.



## Metals vs. Non-Metals

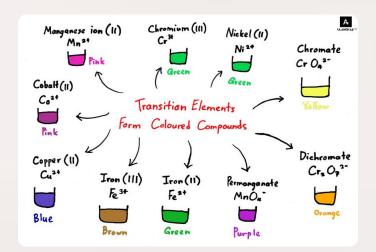
#### **Metals**

- Incomplete outer shell (less than 4 electrons).
- Tend to lose electrons, forming positive ions.
- Located below the zigzag line on the periodic table.
- Combine with non-metals by electron transfer.
- Examples: Alkali metals (Group I), Earth alkali metals (Group II).

#### **Non-Metals**

- Incomplete outer shell (4 or more electrons).
- Tend to gain electrons, forming negative ions.
- Located above the zigzag line on the periodic table.
- Combine with metals by gaining electrons.
- Combine with other non-metals by sharing electrons.
- Examples: Halogens (Group VII).

# Noble Gases & Exceptions


## Noble (Inert) Gases

- Found in Group 0 (VIII).
- Complete outer valence shell (8 electrons, except Helium with 2).
- No chemical reactivity; cannot lose, gain, or share electrons.
- Used in light bulbs (longer lifespan) and weather balloons (Helium).

## **Key Reminders**

All elements are solids or gases at room temperature, except **Mercury (liquid metal)** and **Bromine (liquid non-metal)**.

- Period number = Number of filled electron shells. Group
  number = Number of outermost electrons (except Helium).
- Carbon and Silicon (Group IV) do not form ions as they cannot lose or gain more than 3 electrons.



# Properties of Transition Metals

### **Physical Properties**

- Higher density and strength.
- Higher melting points (e.g., used in light bulbs).

## **Chemical Properties**

- · Compounds are often colored, especially when hydrated.
- Form ions with multiple oxidation states (e.g., Fe+2 & Fe+3).
- Can act as catalysts, accelerating reaction rates without changing chemically.

# Calculating Relative Atomic Mass

The relative atomic mass (Ar) is the average mass of naturally occurring atoms of an element relative to Carbon-12. It's not always a whole number due to isotopes.

$$Relative atomic mass(R.A.M) = (r1xAr1) + (r2xAr2) + .../Sum of ratios(or$$

Example: Copper (Cu)

Copper has two isotopes: 63Cu (69% abundance) and 65Cu (31% abundance).

**Calculation:**  $(69 \times 63) + (31 \times 65) / (69 + 31) = 63.62 \text{ a.m.u.}$ 

Isotopes of the same element have identical chemical properties but slightly different physical properties due to mass differences.